Observation of N.m.r. Spectra of ¹³C in Natural Abundance

By D. F. S. NATUSCH and R. E. RICHARDS (*Physical Chemistry Laboratory*, Oxford)

WE have used the nuclear-electron Overhauser effect^{1,2} to observe magnetic resonances from ¹³C nuclei in natural abundance $(1\cdot1\%)$.

The apparatus used had a permanent magnetic field strength of 3300 gauss which corresponds to a ¹³C resonance frequency of 3.5 Mc./sec. and an electron resonance frequency of 9.125 kMc./sec.³ The probe consisted of a cylindrical microwave cavity which was operated in the H₀₁₁ mode and had an n.m.r. coil of 20 turns (diameter 4 mm.) located at its centre. The effective sample size was about 35 mm.³ All samples contained the 2,4,6-tri-t-butylphenoxy-radical.²

The ¹³C resonance of a $62 \cdot 5\%$ enriched sample of Fe(CO)₅ was found to be negatively enhanced about 35 times (Figure 1), and the enhancement factor obtained by extrapolating to infinite microwave power² was -50. The spin-lattice relaxation time of the ¹³C nuclei in this solution was 1.5 sec. Figure 2 shows the enhanced resonances obtained from the ¹³C nuclei of benzene, of chloroform, and of a 40:60 mixture of benzene and chloroform. Figure 3 shows the positively enhanced ¹³C resonance of a concentrated solution of the radical precursor (2,4,6-tri-t-butylphenol) in benzene. In all cases the spin-lattice relaxation times of the ¹³C nuclei were reduced to a few seconds by addition of the free radical.

Triple irradiation experiments indicated that a strong three spin effect⁴⁻⁶ was operative in solutions of benzene, cyclohexane, chloroform, bromoform, and hexafluorobenzene containing less than

FIGURE 3

NUMBER 16, 1966

about 10-3M of free radical. Decoupling the 3rd spin (H or F) produced a considerable increase in the signal to noise ratio. These results are in agreement with those obtained by other workers.4,7-9

The positive enhancements of the tertiary butyl ¹³C nuclear resonance of the radical precursor are in agreement with the theory put forward to explain positively enhanced tertiary butyl proton resonances in this system¹⁰ but the other positive enhancements are unexpected. Calculations¹¹ have indicated that scalar coupling between electrons and ¹³C nuclei should be about twice as effective as between electrons and protons for a given amount of electron mixing but this does not seem sufficient to account for the strong positive enhancement. However, contact between a radical electron and a large halogen atom (as possessed by all the molecules whose ¹³C resonances are positively enhanced) may great facilitate scalar coupling and give rise to the observed behaviour.

Attempts have been made to observe enhanced ¹³C spectra in a magnetic field of 12,500 gauss. No spectra have been observed for ¹³C nuclei in natural abundance, however an enriched sample of $Fe(CO)_5$ gave a ¹³C resonance negatively enhanced about 4 times. This suggests that the electron correlation spectrum is near zero at this field.

TABLE

Sign of

Solvent	enhancement	Notes
C.H.	_	Very strong
Č.F.	_	Very strong
Č, D,		
C.H.F		
C.HCH		
CH_CE	_	
CH (CH)		
$C_{6}^{11}_{4}^{-}(C_{11}^{3/2})$		
$E_6(CO)$	—	Enriched sample
CUCI 5		Entrened sample
	+	
CH_2Br_2	+	
CH ₂ I ₂	+	
CH ₃ I		
CCl ₄	+	
CFCI ₃		No resonance observed
CF ₃ CCl ₃		
СН₃ОН		
CH ₃ CN	_	- ¹³ CN resonance very
		strong
H·CO ₂ ·CH ₃	—	
CH ₃ ·CH ₂ ·OH	-	
(C, H ₅), CO		
ČS,		
2,4,6-Tri-t-	+ (t-butyl)	Conc. solution in
butylphenol	— (aromatic)	benzene
~ •	. /	

(Received, July 18th, 1966; Com. 511.)

- ¹ L. Solomon, Phys. Rev., 1955, 99, 559.
- ² R. A. Dwek, J. G. Kenworthy, D. F. S. Natusch, R. E. Richards, and D. J. Shields, Proc. Roy. Soc., 1966, A, 291, 487.
 - ³ J. G. Kenworthy and R. E. Richards, J. Sci. Instr., 1965, 42, 675.

 - ⁴ K. H. Hausser and F. Rheinbold, *Phys. Letters*, 1962, 2, 53.
 ⁵ D. F. S. Natusch and R. E. Richards, *Chem. Comm.*, 1966, 185.
 ⁶ D. F. S. Natusch and R. E. Richards, *Mol. Phys.*, in the press.

 - ⁷ C. H. Holm, J. Chem. Phys., 1957, 26, 707.
 - E. G. Paul and D. M. Grant, J. Amer. Chem. Soc., 1961, 83, 1838.
 J. P. Imbaud, Compt. rend., 1965, 261, 5442.

 - ¹⁰ R. A. Dwek, J. G. Kenworthy, and R. E. Richards, Mol. Phys., in the press.
 - ¹¹ M. C. R. Symons, Adv. Phys. Org. Chem., 1963, 1, 183.